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A deep stop during decompression from 82 fsw 
(25m) significantly reduces bubbles and fast 
tissue gas tensions.

Dear Sir:

A large number of strategies for 
improving decompression procedures for 
surface oriented diving have been suggested, 
including deeper stops and a slower ascent 
rate during the deepest part of the ascent. 
However, if there is considerable theoretical 
support for this, limited experimental evidence 
has been presented to support the efficiency 
of such procedural changes.  It was therefore 
much appreciated that Marroni et al (1) 
investigated the effect of different ascent rates 
and decompression stops on 22 recreational 
divers completing 16 different dives to 25 m 
in open water.  Independent variables were 8 
different combinations of bottom time (either 
25 or 20 min), ascent rates (3, 10 or 18 m/min) 
and staged decompression stops (at 15 or 6 
m for 5 min).  Outcome measures were the 
amount of venous gas embolism monitored 
precordially and estimated saturation of inert 
gas in eight tissues with half-times calculated 
according to the Bühlmann algorithm.  The 
main conclusion was that “The introduction 
of a deep stop during decompression ascent 
appears to significantly decrease Doppler 

recorded bubbles and predicted gas tensions 
in the fast ‘tissues’ which may relate to actual 
gas exchange within the spinal cord.” The 
authors conclude that such a deep stop may 
therefore significantly reduce the incidence 
of spinal related decompression sickness. 

We believe that the manuscript has 
a few flaws that could misdirect the reader. 
First of all, the title suggests that the authors 
have investigated a procedure that will reduce 
“fast tissue” gas tensions while, in fact, the 
authors have mathematically calculated gas 
tension in a “fast tissue” based on classic 
Haldanian theory of flow-limited gas kinetics.  
Fig 4b/Profile 6 shows less supersaturation 
in tissues with half times (T1/2) of 5 and 10 
min than Fig 4a/Profile 2. However it is 
not easily understood whether this is due 
to the staged decompression at 15 and 6 m 
of Profile 6 or whether it was due to a total 
decompression time being ~50% longer in 
Profile 6 compared with Profile 2 (12.5 vs 8 
min).  Actually Table 3 shows that allowed 
average surfacing saturation in the tissues 
with T1/2 of 5 and 10 min are closely related 
to total decompression time and varies less 
with ascent rate and length of the staged 
decompression stops.  We don’t see Table 3 
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as a convincing evidence for the effects of 
deep stops on “fast tissue” supersaturation at 
surface.

Venous gas embolism has been 
measured by acoustic detection of continuous 
Doppler ultrasound.  The authors mention 
that the signals were scored in real time and 
re-investigated by a “blinded” specialist at a 
later time.  This information is however of 
little use since no information is given on 
whether the scores from the first investigator 
were used or whether the specialist score was 
used.  As pointed out by Sawatzky and Nishi 
(2) there is a risk of significant inter-rater 
disagreement. The reader should be advised 
by a quantitative measure (e.g. Kappa score) 
of the agreement between raters in this case.  
The authors have introduced a new VGE 
scoring system, the “Expanded Spencer 
Scale.” Firstly, it is difficult to appreciate the 
benefit of yet another VGE grading system, 
since most published work on acoustic VGE 
detection is based on either the Spencer 
or Kisman-Masurel (K-M) scoring system 
(3). Due to the general difficulty in scoring 
Doppler recordings mentioned above, fewer 
categories (none, few or many bubbles) 
should be used. While the association between 
decompression sickness and VGE scored with 
K-M grading has previously been reported 
(3), the introduction of a new grading system 
(ESS) complicates interpretation of VGE data 
for the reader without any obvious benefit.  
Rather, the use of a numerical grading system 
(0-4) confuses the reader, suggesting that the 
categorized VGE data could be transformed 
to a continuous variable.  Secondly, the 
reader is invited to assume that a statistical 
association (between bubble grade and tissue 
supersaturation has been demonstrated (Figs. 
2 and 3), while this conclusion is based on an,in 
our opinion, erroneous transformation of the 
categorical VGE bubble data to a continuous 
BSI variable. ANOVA and Kruskal-Wallis 

tests assuming continuous data were 
incorrectly applied in Fig 1. Accordingly, a 
conclusion of statistical significance is drawn 
using an inappropriate test.  A method for 
transforming repetitive VGE measurements 
into a continuous variable (KISS) has been 
developed as discussed by Nishi et al (3), 
but a statistical relationship between VGE 
and health outcome (DCS) has only been 
described using maximum VGE score as 
the independent variable.  We believe that 
the readers should be given the opportunity 
to assess maximum VGE scores in a study 
like this and not only a transformation of the 
original data.  The information provided does 
not allow us to evaluate whether there was a 
statistical difference in maximum VGE score 
between the different profiles tested and we 
are unable to conclude whether the authors’ 
statement in the title (a deep stop significantly 
reduces bubbles) is correct.

In the discussion of the 10 min tissue, 
the authors state, “Therefore decompression 
profiles may need to focus more closely on 
this ‘tissue’ as not only being a critical factor 
in the production of bubbles, but also possibly 
reflecting supersaturation within the spinal 
cord.”  In the conclusion they say that “…
such a deep stop may therefore significantly 
reduce the incidence of spinal cord related 
decompression sickness.” We believe that 
these statements invite the reader to believe 
that the data presented in some way suggests 
relationship between spinal DCS and VGE.  
We agree that there is a relationship between 
high bubble grades and DCS and that there 
is a relationship between a PFO and serious 
neurological DCS, indicating that such a 
relationship may exist (4,5). However, the 
data presented do not show any relationship 
between spinal DCS and VGE.  We challenge 
the authors to document a relationship based 
on the data in their study.

The authors should be given credit for 
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the much needed effort to assess the benefit 
of deep stops in diving.  However, we believe 
that the conclusions are not substantiated by 
the data provided or the statistical analyses 
used, and we would suggest proper care 
when disseminating the findings to the diving 
community, more care than shown in the 
recent edition of Alert Diver (6). 
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